skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Viadero, Natasha"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Variability in space use among conspecifics can emerge from foraging strategies that track available resources, especially in riverscapes that promote high synchrony between prey pulses and consumers. Projected changes in riverscape hydrological regimes due to water management and climate change accentuate the need to understand the natural variability in animal space use and its implications for population dynamics and ecosystem function. Here, we used long-term tracking of Common Snook (Centropomus undecimalis) movement and trophic dynamics in the Shark River, Everglades National Park from 2012 to 2023 to test how specialization in the space use of individuals (i.e., Eadj) changes seasonally, how it is influenced by yearly hydrological conditions, and its relationship to the between individual trophic niche. Snook exhibited seasonal variability in space use, with maximum individual specialization (high dissimilarity) in the wet season. The degree of individual specialization increased over the years in association with greater marsh flooding duration, which produced important subsidies. Also, there were threshold responses of individual space use specialization as a function of floodplain conditions. Greater specialization in space use results in a decrease in snook trophic niche size. These results show how hydrological regimes in riverscapes influence individual specialization of resource use (both space and prey), providing insight into how forecasted hydroclimatic scenarios may shape habitat selection processes and the trophic dynamics of mobile consumers. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  2. ABSTRACT ObjectiveEnvironmental variability as a factor of climate change and water management can result in fluctuations in the abundance and distribution of fish populations from year to year, with either negative or positive effects depending on behavioral and physiological requirements and the ability to adapt to changing conditions. Variability in water levels can also influence prey availability, affecting predator abundance in seasonal foraging areas. In this study, our objective was to better understand how environmental variation has affected the relative abundance of Common Snook Centropomus undecimalis in the freshwater/estuarine habitats of Everglades National Park. MethodsElectrofishing data over 17 years (2004–2021) were analyzed in relation to a long-term time-series of environmental conditions, including water level, temperature, salinity, and precipitation. We used seasonal and trend decomposition via locally estimated scatterplot smoothing to isolate the effect of seasonality and identify nonlinear trends in the environmental time-series data and Common Snook abundance and Mann–Kendall trend tests to identify monotonic and directional trends over time. To identify the factors that best explain variation in Common Snook abundance, we used generalized linear models to relate relative abundance to the environmental covariates. ResultsWe found significant long-term trends of increasing water level and temperature and decreasing salinity in the study area. The generalized linear models indicated that Common Snook abundance had a negative relationship with water level and a positive relationship with temperature. Common Snook abundance over the 17 years of sampling was relatively stable; however, increases/decreases in Common Snook abundance corresponded to both seasonal changes in water level and the periodic occurrence of extreme conditions (e.g., cold spells, droughts, prolonged dry-season flooding). ConclusionsUnderstanding how past environmental change has affected fish populations can provide insight into how they may respond to future conditions. Our results suggest that water management decisions that maintain seasonal patterns of high/low water levels can potentially mitigate climate-driven shifts by providing conditions that promote prey production in the wet season and foraging opportunities in the dry season, increasing the relative abundance of ecologically and recreationally important species such as Common Snook. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  3. Numerous species face redistribution and compression of habitat due to climate change. Compounded with anthropogenic stressors, coastal systems are among those experiencing the largest shifts in distribution and degradation of habitats. We coupled long-term movement and environmental data to assess how a freshwater species responds to changes in a coastal refuge habitat to quantify distributional changes, identify key environmental variables, and provide restoration targets. Salinity, variation in salinity, and stage of surrounding marsh habitat were the most important variables driving Florida bass (Micropterus salmoides) occurrence in the estuary. Salinity below 8.7 ppt had the largest positive effect on Florida bass occurrence, while low levels of daily variation in salinity (< 1.3 SD) and marsh stages between 11.4 and 27.7 cm were associated with an increased probability of Florida bass occurrence. Years with above average freshwater inputs that shifted mesohaline boundaries downstream generated 15.3 km2 of both core and conditional habitat for Florida bass, average conditions generated 4.4 km2 of core and conditional habitat, whereas dry conditions compressed Florida bass habitat to 1.7 km2. These results suggest that varying environmental scenarios can shift the amount of suitable habitat available for freshwater species using conditional coastal habitats. Our study provides salinity and marsh depth thresholds that offer actionable management targets to maximize the presence of Florida bass in coastal rivers, with population and fishing quality benefits. Climate change will likely result in large-scale reductions of critical dry season habitat for these species, while restoration efforts and adaptive management can bolster the resiliency of these habitats. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  4. This study examines temporal and spatial dynamics in the fish community of the oligohaline to mesohaline reaches of ecotonal creeks along the southwest region of Everglades National Park. Collections of fish in SW ENP during 2004 - 2014 across Rookery Branch and Tarpon Bay. Sampling started in the wet season of 2004, and has been conducted three times per year at these approximate times: November (wet season); February (transition); and April (dry season). Electrofishing samples were processed in the field, and all species (except for non-natives) were returned live at the point of collection. In the Rookery Branch region, fish abundance varies markedly yearly and seasonally. Catches peak in the drier months, reflecting a pulse of movement by freshwater taxa into creeks as marshes upstream dry. The timing of this pulse is closely tied to the pattern of water recession in upstream marshes, and has important ramifications for wading bird prey availability. 
    more » « less
  5. Abstract Background Spawning migrations are a widespread phenomenon among fishes, often occurring in response to environmental conditions prompting movement into reproductive habitats (migratory cues). However, for many species, individual fish may choose not to migrate, and research suggests that conditions preceding the spawning season (migratory primers) may influence this decision. Few studies have provided empirical descriptions of these prior conditions, partly due to a lack of long-term data allowing for robust multi-year comparisons. To investigate how primers and cues interact to shape the spawning migrations of coastal fishes, we use acoustic telemetry data from Common Snook ( Centropomus undecimalis ) in Everglades National Park, Florida, USA. A contingent of Snook migrate between rivers and coastal spawning sites, varying annually in both the proportion of the population that migrates and the timing of migration within the spawning season. However, the specific environmental factors that serve as migratory primers and cues remain unknown. Methods We used eight years of acoustic telemetry data (2012–2019) from 173 tagged Common Snook to investigate how primers and cues influence migratory patterns at different temporal scales. We hypothesize that (1) interannual differences in hydrologic conditions preceding the spawning season contribute to the number of individuals migrating each year, and (2) specific environmental cues trigger the timing of migrations during the spawning season. We used GLMMs to model both the annual and seasonal migratory response in relation to flow characteristics (water level, rate of change in water level), other hydrologic/abiotic conditions (temperature, salinity), fish size, and phenological cues independent of riverine conditions (photoperiod, lunar cycle). Results We found that the extent of minimum marsh water level prior to migration and fish size influence the proportion of Snook migrating each year, and that high river water level and daily rates of change serve as primary cues triggering migration timing. Conclusion Our findings illustrate how spawning migrations are shaped by environmental factors acting at different temporal scales and emphasize the importance of long-term movement data in understanding these patterns. Research providing mechanistic descriptions of conditions that promote migration and reproduction can help inform management decisions aimed at conserving ecologically and economically important species. 
    more » « less
  6. The patchy nature of landscapes drives variation in the extent of ecological processes across space. This spatial ecology is critical to our understanding of organism-environmental interactions and conservation, restoration, and resource management efforts. In fisheries, incorporation of the spatial ecology of fishes remains limited, despite its importance to fishery assessment and management. This study quantified the effects of variation in headwater river stage, as an indicator of freshwater inflow, on the distribution and movement of a valuable recreational fishery species in Florida, common snook (Centropomus undecimalis). The hypothesis tested was that variation in river stage caused important habitat shifts and changes in the movement behavior of Snook. A combination of electrofishing and acoustic telemetry was used to quantify the distribution and movement patterns of snook in the upper Shark River Estuary, Everglades National Park. Negative relationships with river stage were found for all three variables measured: electrofishing catch per unit effort, the proportion of detections by upstream acoustic receivers, and movement rates. Snook were up to 5.8 times more abundant, were detected 2.3 times more frequently, and moved up to 4 times faster at lower river stages associated with seasonal drawdowns in water level. These findings show how seasonal drawdowns result in local aggregations of consumers, largely driven by improved foraging opportunities, and emphasize the importance of maintaining the natural variance in managed hydrological regimes. Results also highlight the importance of understanding the nature of flow-ecology relationships, especially given projected changes in freshwater availability with climate change. 
    more » « less
  7. null (Ed.)
  8. null (Ed.)
    Seagrasses are threatened worldwide due to anthropogenic and natural disturbances disrupting the multiple feedbacks needed to maintain these ecosystems. If the disturbance is severe enough, seagrass systems may undergo a regime shift to a degraded system state that is resistant to recovery. In Florida Bay, Florida, United States, two recent, large-scale disturbances (a drought-induced seagrass die-off in 2015 and Hurricane Irma in 2017) have caused 8,777 ha of seagrass beds to degrade into a turbid, unvegetated state, causing a large sediment plume. Using satellite imagery digitization and long-term seagrass cover data, we investigate the expansion of this sediment plume between 2008 and 2020 and the potential interaction of this sediment plume with seagrass recovery in two focal basins in Florida Bay affected by the die-off, Johnson and Rankin. The average size of the sediment plume increased by 37% due to the die-off and Hurricane Irma, increasing from an average of 163.5 km 2 before the disturbances to an average of 223.5 km 2 . The expansion of the plume was basin-specific, expanding into Johnson after the 2015 seagrass die-off with expansive and long-lasting effects, but only expanding into Rankin after Hurricane Irma with less severe and short-term effects. Furthermore, the sediment plume was negatively correlated with seagrass cover in Johnson, but held no relationship with seagrass cover in Rankin. Thus, different disturbances can act upon seagrass ecosystems at varying scales with varying consequences. This study illustrates the advantage of combining satellite imagery with field data to monitor disturbances as well as highlights the importance of investigating disturbances of seagrass ecosystems at various scales to comprehend seagrass resilience in the context of future extreme events. 
    more » « less